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1. Introduction

We construct uniformly high order accurate schemes satisfying a strict maximum principle
for scalar conservation laws. A general framework (for arbitrary order of accuracy) is estab-
lished to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory
(ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with
first order Euler forward time discretization solving one-dimensional scalar conservation
laws. Strong stability preserving (SSP) high order time discretizations will keep the maxi-
mum principle. It is straightforward to extend the method to two and higher dimensions
on rectangular meshes. We also show that the same limiter can preserve the maximum
principle for DG or finite volume schemes solving two-dimensional incompressible Euler
equations in the vorticity stream-function formulation, or any passive convection equation
with an incompressible velocity field. Numerical tests for both the WENO finite volume
scheme and the DG method are reported.

© 2009 Elsevier Inc. All rights reserved.

We consider numerical solutions of the scalar conservation law

u+V-Fu)=0, u(x,0)=uyx),

(1.1)

where u4(X) is assumed to be a bounded variation function. The one-dimensional version

U +f(u)x = 07 U(X,O) = UO(X),

(12)

is used often in this paper to illustrate the main ideas. The main difficulty in solving (1.1) is that the solution may contain
discontinuities even if the initial condition is smooth, hence we must consider the physically relevant unique weak solution
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which is called the entropy solution. An important property of the entropy solution is that it satisfies a strict maximum prin-
ciple (e.g. [5]), i.e., if

M= m;;axuo(x), m= mxin Up(X), (1.3)

then u(x,t) € [m,M] for any x and t.

Successful high order numerical schemes for solving (1.1) includes, among others, the Runge-Kutta discontinuous Galer-
kin (RKDG) method with a total variation bounded (TVB) limiter [3], the essentially non-oscillatory (ENO) finite volume and
finite difference schemes [9,25], and the weighted ENO (WENO) finite volume and finite difference schemes [17,12].
Although these schemes are nonlinearly stable in numerical experiments and some of them can be proved to be total var-
iation stable, they do not in general satisfy a strict maximum principle. It is very difficult to obtain a uniformly high order
accurate scheme satisfying a strict maximum principle in the sense that the numerical solution never goes out of the range
[m, M], which is a desired property in some applications, for example, when u is a volume ratio which should not go outside
the range of [0, 1].

The total variation diminishing (TVD) schemes [8] satisfy the strict maximum principle, but it is well known that finite
difference or finite volume TVD schemes solving (1.2), where the total variation is measured by that of the grid values, nec-
essarily degenerate to first order accuracy at smooth extrema [19], thus TVD schemes are at most second order accurate in
the L' norm for general smooth and non-monotone solutions. By measuring the total variation of the reconstruction poly-
nomials, Sanders introduced a third order TVD scheme [21] solving (1.2). In [26], we have extended Sanders’s scheme to
higher order accuracy (up to sixth order), obtaining uniformly high order TVD schemes with the total variation measured
by that of the reconstruction polynomials. The schemes in [21,26] satisfy strict maximum principle, however it appears dif-
ficult to generalize these schemes to multi-dimensional problems, because the time evolution is exact and is implemented
by using the characteristic method, which is realistic only in one space dimension. To get a genuinely high order accurate
scheme satisfying the maximum principle, we should measure the maximum of the reconstruction polynomials. In [16],
by controlling the number of extrema and the maximum/minimum of the reconstruction polynomials, Liu and Osher devel-
oped a third order accurate non-oscillatory scheme in one space dimension, for which they proved a strict local maximum
principle and non-oscillatory properties for one-dimensional linear equations. The time evolution in [16] is equivalent to the
exact time evolution only for the linear equation. That is why maximum principle of the scheme in [16] can be proved only
for the linear equation. In [13], Jiang and Tadmor proved the maximum principle of the second order two multi-dimensional
central schemes. However, it appears difficult to generalize the provable maximum principle to uniformly higher order
schemes in this class.

In this paper, we develop a genuinely high order accurate maximum-principle-satisfying scheme for one-dimensional and
multi-dimensional scalar conservation laws, in the sense that the numerical solution never goes out of the range [m, M] of the
initial condition. Our scheme uses the simple Euler forward and the standard strong stability preserving (SSP) Runge-Kutta
or multi-step time discretizations [25,23,7], allowing for easy and practical implementation and easy generalization from
one to multi-dimensions. The limiter introduced in [16] is used to control the maximum/minimum of the reconstruction
polynomials. Simply speaking, this control is achieved by a linear scaling around the cell average. In particular, we demon-
strate this procedure by considering a quadratic polynomial p(x) approximating a function u(x) with third order accuracy on
a small interval I. Let p denote the cell average of p(x) and M’ = max,p(x), m = minyp(x), Mo = Maxyu(x), mo =
min,u(x), define p(x) by

,1 } (1.4)

If p € [m, M], then p(x) is still a third order accurate approximation with the same cell average, and p(x) € [m, M), for all x € .
This fact is proved in [16]. The major difficulty to use this idea to construct a maximum-principle-satisfying scheme is to
maintain the property u € [m, M] during the time evolution, without destroying accuracy. The exact time evolution proce-
dure is such a method, which is used in [21,16,26], however this procedure is very difficult to implement for multi-dimen-
sional nonlinear problems. In this paper, we follow the idea in [20] to show that, under a suitable CFL condition, for a finite
volume or a DG scheme, the simple Euler forward or the strong stability preserving (SSP) time discretization [25,23,7] will
keep the property i € [m,M] and the validity of the maximum principle if we use the linear scaling (1.4) or a simplified ver-
sion for the reconstruction polynomials or the DG polynomials, thus maintaining uniform high order accuracy. The simplified
limiter is still a linear scaling (1.4) but it replaces the definition of M’ and m’ by M’ = maxysp(x) and m’ = miny.sp(x) where S
is a finite set containing the Legendre Gauss-Lobatto quadrature points on I. Since we avoid evaluating the extrema of
polynomials in the simplified limiter, we can easily implement it for polynomials of any degree.

The main conclusion of this paper is as follows: by applying the limiter (1.4) or the simplified version which avoids the
evaluation of extrema of polynomials, to a high order accurate finite volume scheme or a discontinuous Galerkin scheme
solving one or multi-dimensional scalar conservation laws, with the time evolution by a SSP Runge-Kutta or multi-step
method, we obtain a uniformly high order accurate scheme solving (1.1) with the strict maximum principle in the sense that
the numerical solution never goes out of the range [m,M], where the m and M are defined in (1.3). The algorithm and
conclusion are also valid for two-dimensional incompressible Euler equations in the vorticity stream-function formulation,
or for any passive convection equation with an incompressible velocity field.

Mo —p| |mo—p
M’7p7m,_p

() = 0(p(x) — P) + P, o:min{‘
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The paper is organized as follows: we first describe and prove the maximum principle for an arbitrarily high order scheme
in one space dimension in Section 2. In Section 3, we provide a straightforward extension to two space dimensions on rect-
angular meshes. Section 4 is the application of the scheme to two-dimensional incompressible Euler equations in the vor-
ticity stream-function formulation, and to any passive convection equation with an incompressible velocity field. In
Sections 5 and 6, numerical tests for the WENO finite volume schemes and for the DG method, respectively, will be shown,
including examples from traffic flow problems and two-dimensional incompressible Euler equations. Concluding remarks
are given in Section 7.

2. High order schemes satisfying the maximum principle in one dimension
2.1. First order Euler forward in time

In this section, we consider a finite volume method, for example the WENO finite volume method in [17], and the DG
method in [3] for solving the one-dimensional scalar conservation laws (1.2). We consider only the first order Euler forward
time discretization in this subsection; higher order time discretization will be discussed in the next subsection.

A finite volume scheme or a scheme satisfied by the cell averages of a DG method can be written as

W= u — alh(uy uly) — h(u ), (2.1)

where n refers to the time step and j to the spatial cell (we assume uniform mesh size only for simplicity), and 1 = £¢ is the

ratio of time and space mesh sizes. i is the approximation to the cell averages of u(x, t) in the cell I; = [x +1] at time level

5%
n, and Uy, ujtl are the high order approximations of the nodal values u(x 4o ,t") within the cells I; and I, 4, respectively. These
2 2

values are either reconstructed from the cell averages u} in a finite volume method or read directly from the evolved poly-
nomials in a DG method. We assume that there is a polynomial p;(x) (either reconstructed in a finite volume method or
evolved in a DG method) with degree k, where k > 2, defined on I; such that u is the cell average of p;(x) on
L, ujt% = pj(xjf%) and u];% = pj(xj+%)-

To define the scheme (2.1), we need to specify the numerical flux function h(.,-), which is assumed to be an exact or
approximate Riemann solver. In particular, h(-, -) is a Lipschitz continuous function of both arguments, and is consistent with
the physical flux f(u) in (1.2): h(u, u) = f(u). For stability reasons, we need more restrictions on the flux function. We will use

a Lipschitz continuous monotone flux as defined in [4], i.e., h(,-) is nondecreasing in its first argument and nonincreasing in
its second argument. For instance, the global Lax-Friedrichs flux defined by

h(u, v) = %[f(u) +f(v) —a(v—u)],  a=max|f' ), (2.2)

where the maximum is taken over the whole region where u and v vary, is a monotone flux. For a monotone flux h(-, ), it is
well known that a first order monotone scheme satisfies the strict maximum principle. We recall this result for the Lax-
Friedrichs flux here.

Lemma 2.1. Under the CFL condition la < 1, a = max |f’(u)|, consider the first order Lax-Friedrichs scheme

utt = — Alh(u},uf ) — h(ul,, ). (2.3)

j j
Ifur € [m,M], Vj, then ul" € [m, M.

Proof. The right hand side of the scheme can be written as

H(uj 1 u] ’ u]+1) = ujn - A[h(u u]+l) h(u}l—lvu}l)]
1 1

=u -2 i(f(u}?) (W) —alully —uf) =5 (Futy) + ) —a(uf —ufly))

n n n )" n n
=(1-Zau} + 3 (au]+l —fui) + i(a”jq + (Ui y)).
We clearly have ZH(b,c,d) =4(a+f'(b)) >0, 2H(b,c,d)=1—2a > 0, and ZH(b,c,d) =4(a—f'(d)) > 0. We also have
H(b,b,b) = b. Therefore,

m=Hmmm)<u"' <HM,M,M)=M. O

Given a scheme in the form of (2.1), assuming u]' € [m, M] for all j, we would like to modify the nodal values ui, in some

way so that u/*! € [m, M]. We will first show a sufﬁcnent condition for (2.1) to satisfy u“” € [m,M], in which we need the
Legendre Gauss Lobatto quadrature points (see Table 2.1 and [11] for more detalls) Consider the N-point Legendre
Gauss-Lobatto quadrature rule on the interval I; = [x i1, X; %], which is exact for the integral of polynomials of degree up

to 2N — 3. We denote these quadrature points on I; as
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Table 2.1
The CFL number (2.6) for 2 < k < 5 and the Gauss-Lobatto quadrature points on [—1,1].
k CFL Quadrature points on [—3, 4]
2 § {-4,0%
: : (4.0
& 1 3573
5 1 (=1 - L 1y
12 207 /20720 2
51 52 GN-1 oN _
5i —{ G =X XX X _XH%}' (24)
Define o, = p;(¥¥) foro = 1,..., N, and let w, be the quadrature weights for the interval [-1,1) such that zg’:]m = 1. Choose
N to be the smallest integer satisfying 2N — 3 > k, then
1 N
=+ /I pi(R)dx = "W, . (2.5)
Jj oa=1

Motivated by the approach in [20], our result is

Theorem 2.2. Consider a finite volume scheme or the scheme satisfied by the cell averages of the DG method (2.1) with the Lax—
Friedrichs flux (2.2), associated with the approximation polynomials p] (x) of degree k (either reconstruction or DG polynomials).
For convenience, in the interval I;, we denote vy = u;_, and vy.q = u e If all the values v, (0.=0,...,N+ 1) and ﬂ]!’ are in the
range [m, M|, then u]"“ [m, M] under the CFL condition

a < minw,. (2.6)
o

Proof. Notice that we have

N
h(uj;%, u;%) - h(ujf_ u ) = h(iw, Onir) = h(20, 1) = S (D, Dain) = K01, D).

a=1

With (2.5), we can rewrite (2.1) as:
= =) ()] = 3w o) )

N 2 . S N
= Zwa [i/oc W [h(i/{h 7/o<+1) - h(voc—h Voc)]:| = ZWaHJ('X:

o

where

R 2 S . .
Hf:Vocfwia[h(vmyfxﬂ)*h(ya—lyytx)]v OC=1,...,N. (27)

Notice that all the (2.7) are of the type (2.3), with ;= in the place of /. Therefore, H“ € [m, M] under the CFL condition (2.6).
Hence uj”1 [m, M] since it is a convex comblnatlon of all the Hf. O

Remark 2.3. It would look that the required condition in the previous theorem is too strong, since it involves restrictions on
the interior point values 2, (« =2,...,N — 1) which do not explicitly appear in the scheme (2.1). It would look natural to
require only 7 = Uy, h=u",, Uy= u . Ony1=u’, and uf are in [m, M], as these are the values which explicitly appear
in the scheme (2.1). However, it is very easy to show tﬁat these requirements alone will not ensure u"” € [m, M]. For exam-
ple, consider the linear convection equation u; + u, = 0, for which the Lax-Friedrichs flux becomes h(u v) =u. Let [0,1] be
the desired range, and u}! = u; = uj*1 = uj*1 =1and U,y = = 0.99, then (2. 1)g1ves uJ”+1 =1+0.01/ > 1 for any finite CFL num-
ber / > 0. The additional restfiction$ for tfle interior point values #, (o = — 1) will however ensure u”” € [m, M)
through Theorem 2.2.

This theorem tells us that for the scheme (2.1), we need to modify p;(x) such that p;(x) € [m, M] for all x € S; where §; is set
of the Legendre Gauss-Lobatto quadrature points for I;. For all j, assume u} € [m, M], we use the modified polynomial p;(x)
after the limiter (1.4) instead of p;(x), i.e

m—ut

: 1} 28)
i

mjfﬂf'

1\/171]}’-1
=nl
Mj*u}’l

pi(x) = 0(p;(x) — uf) +u, 0=min {
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with

M; = maxp;(x), m; = minp;(x). (2.9)

xel; xelj

Let ﬂjt% = ﬁj(xjf%) and ﬁ];% = ﬁj(xﬁ%). We get the revised scheme of (2.1):

= a5 05) ()] 21

2

We will show in the next Lemma that this limiter does not destroy the uniform high order of accuracy.

Lemma 2.4. Assume 4} € [m,M], then (2.8) and (2.9) gives a (k + 1)th order accurate limiter.

Proof We need to show p;(x) — p;(x) = O(Axk*1) for any x € I, We only prove the case that p;(x) is not a constant and
0=

u”

, the other cases being similar. Since &} <M and & < M;, we have 0 = (M —af)/(M; — 4'). Therefore,

P~ ) = 00309 ~57) 8 00 = (0~ 1(px) ~8) = g (00 1) = (M%)’ﬁfjf)%iﬁf.

—un
)

By the definition of 6 in (2.8), 6 M; i implies that 6 = M-

,.’ > 1, i.e. there is overshoot M; > M, and the overshoot

M; — M = O(Ax**1) since p;(x) is an approximation with error Ax"“ Thus we only need to prove that < Cy, where

Mu”

Cy is a constant depending only on the polynomial degree k. In [16], C; = 3 is proved. We now prove the existence of C;

for any k. Assume p;(x) = ao +a;(“) + - + a(*22)* and p(x) = ao + a1x + - - + ¥, then the cell average of p(x) on

I'=[-1,3]is p = u} and max,qp(x) = M;. So we have
_qn 5
max pj()”: p()p,.
xelp | Mj — xel max py)-p

Notice that it suffices to prove the existence of C, such that

minp(x) — p
xel

maxp(x) —p
xel

< Gy

It is easy to check that |min,.p(x) — p| and |[max,.p(x) — p| are both norms on the finite dimensional linear space P¥, which is
the set of all polynomials of degree k. Any two norms on this finite dimensional space are equivalent, hence their ratio is
bounded by a constant C,. O

Notice that in (2.9) we need to evaluate the maximum/minimum of a polynomial. We prefer to avoid evaluating the ex-
trema of a polynomial, especially since we will extend the method to two dimensions. Since we only need to control the val-
ues at quadrature points, we could replace (2.9) by

M; = ngngpj(x); m; = Ipelsypj(x), (2.11)

and the limiter (2.8) and (2.11) is sufficient to enforce
pi(x) € [m,M], VxeS§;.

As to the accuracy, (2.11) is a less restrictive limiter than (2.9), so the accuracy will not be destroyed. Also, it is a conservative
limiter because the it does not change the cell average of the polynomial.
We now have the following theorem.

Theorem 2.5. Assume p;(x) has degree k, m and M are defined in (1.3) . If (2.1) is (k + 1)th order accurate for smooth solutions
and ut € [m, M, then the revised scheme (2.8), (2.11) and (2.10) is also (k + 1)th order accurate and satisfies the maximum
prlnaple u"” € [m, M|, under the CFL condition (2.6) . See Table 2.1 for the CFL number for 2 < k < 5.

Proof. Let v, = p;(x*) for a=1,...,N, 0o = Pj1(x; 1) and Oy = Pina (X, ) The limiter (2.8) and (2.11) ensures all the
revised values , are in [m, M]. Theorem 2.2 then ensures the maximum prlnc1ple u”+1 € [mM]). O

Remark 2.6. We recall that for k = 2 the CFL condition for linear stability for the DG scheme [3] is Aa < %, which is compa-
rable to our CFL restriction.
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Remark 2.7. From the proof of Theorem 2.2, we can see that any type of quadrature rule will work as long as the quadrature
points include the two cell ends. It would appear that there is a possibility to achieve a larger CFL number if we can find a
better quadrature in the sense that min,w, is larger. However, for k = 2, 3, we have checked that the Gauss-Lobatto quad-
rature is the best choice.

Remark 2.8. Although we use Lax-Friedrichs flux in the theorem, any other monotone flux will also work under the corre-
sponding CFL condition.

2.2. Higher order time discretization

We will use strong stability preserving (SSP) high order time discretizations. For more details, see [25,23,7,6]. For exam-
ple, the third order SSP Runge-Kutta method [25] (with the CFL coefficient c = 1) is

u® =yn + AtF(u")

u® =3yn 4 1o +AtF( )), (2.12)
utt =1yt + 2 (0@ + AtF(u®)),
where F(u) is the spatial operator, and the third order SSP multi-step method [23] (with the CFL coefficient ¢ =1) is
16 11 12
ntl _ 29 o n — (" 3 =
u™t = 27(u + 3AtF(u")) +27(u +17 AtF(u™3)). (2.13)

Here, the CFL coefficient ¢ for a SSP time discretization refers to the fact that, if we assume the Euler forward time discret-
ization for solving the equation u; = F(u) is stable in a norm or a semi-norm under a time step restriction At < Ato, then the
high order SSP time discretization is also stable in the same norm or semi-norm under the time step restriction At < cAt,.

Since a SSP high order time discretization is a convex combinations of Euler forward, the full scheme with a high order SSP
time discretization will still satisfy the maximum principle.

2.3. Implementation for the DG scheme

At time level n, assuming the DG polynomial in cell [; is p;(x) with degree k, and the cell average of p;(x) is 4] € [m, M|,
where m and M are defined in (1.3), then the algorithm flowchart of our algorithm for the Euler forward is

e Evaluate the point values of p;(x) in S; to get m; and M; in (2.11).

e Compute pj(x) in (2.8).

o Use p;(x) instead of p;(x) in the DG scheme with Euler forward in time under the CFL condition in Theorem 2.5. For the time
evolution of the cell average, mathematically it is equivalent to plugging the revised nodal values u*, = pj(x; %) and
uJ+1_p]( ]+) (2 10)

For SSP high order time discretizations, we need to use the limiter in each stage for a Runge-Kutta method or in each step
for a multi-step method.

2.4. Implementation for the finite volume WENO scheme

The implementation for a finite volume WENO scheme [17,2,24] is slightly different since there is not a specific recon-
struction polynomial in each cell. After the WENO reconstruction, we have the high order accurate nodal values u*1 and
U, on each cell I;. To have a high order approximation polynomial in order to apply our limiter, we can use the information

of the cell averages and the nodal values to construct one.
For example, consider the fifth order accurate finite volume WENO scheme. Assume we already have the nodal values
ujt , and Uy from the WENO reconstruction, we will need a polynomial p;(x) of degree four such that
2
pi(Xiy) = ujfy pj(X;,1) = uj, i and the cell average of p;(x) over [; is &f. Moreover, p;(x) should be a fifth order accurate approx-
imation to the exact solution on I;. To this end, we choose to use the Hermite type reconstruction of degree four; i.e., the
polynomial p;(x) should satisfy

1 e . -
= /’pj(x)dx =u, i=j-1,jj+1; and pj(xj_%) = ujt%7 p; (xj+%> =l
If the reconstruction is written as

pi(%) = aa(x = x)" + a3(x = X;)” + @ (x — %) + a1 (X — X)) + ao,
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then the coefficients can be given explicitly as

i - -
L 20807 + 1", — 54 (ujf% + uH%)
o=

192 ’
. ut - ut, — 10(ujt% - uj;%)
' 8AX ’
o —(u, +58uf +uf,) + 30(u].t% + uj;%)
g 8AX2 ’
o L
g 2(u, )
az = AX3 )
L ST+ 508 + S, 30(uf, +u,y)
‘T 12A%4

In summary, the algorithm for the limiter on the fifth order finite volume WENO with the Euler forward time discretization is:

o Construct the Hermite type polynomials p;(x).

e Evaluate point values of p;(x) in S; to get m;, M; in (2.11).

e Compute p;j(x) in (2.8).

e Compute the revised nodal values ﬁ}t% =pj (xjf%) and ﬂj;% = ﬁj(xﬁ%), then plug them in (2.10) with the CFL condition ia < L.
For SSP high order time discretizations, we need to use the limiter for each stage for Runge-Kutta methods or for each

step for multi-step methods.

3. High order schemes satisfying the maximum principle in two dimensions

In this section we extend our limiter to finite volume or DG schemes of (k + 1)th order accuracy on rectangular meshes
solving two dimensional conservation law

U +f(u)x +g(u)y :07 u(x,y,O) :uo(x7y)' (31)

In this section, m and M refer to M = max,,uo(x,y), m = min,,uo(x,y). As before, we would only need to discuss the Euler
forward in time. SSP high order time discretizations will keep the maximum principle.

3.1. Decomposition of the two-dimensional scheme into convex combination of one-dimensional schemes

For simplicity we assume we have a uniform rectangular mesh. At time level n, we have an approximation polynomial
p;(x,y) with the cell average uj} on the (i,j) cell [x,;%,x,- %] X Lyjf%, Y +%]. Let P* denote the set of two-variable polynomials of

degree k and Q" denote the set of tensor products of single variable polynomials of degree k. We consider pi(x,y) € P* for

the DG method and p;(x,y) € Q¥ for the finite volume ENO and WENO finite volume method [2,24]. Let HLJO’%
2

u;, lJ.(y), ”5,1(")» u;ﬁl(x) denote the traces of p;(x,y) on the four edges, respectively, see Fig. 3.1. All of the traces are single

2 42 2

variable polynomials of degree k. A finite volume scheme or the scheme satisfied by the cell averages of a DG method for

(3.1) on a rectangular mesh can be written as

(T 1, 9541) (Tip1:9501)

Fig. 3.1. The traces of p;(x,y).
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g - /yy I [ 0,0, 3,00] = [y, 00, )]y — s / [543, 15,00 o [ 00,0,
(3.2)

where hy(-,-), hy(-,-) are monotone fluxes. We will use the Lax-Friedrichs flux as an example throughout the paper:
1
hi(u, v) = i[f(u) +f(v) —a(v—u)], a =max|f'(u),
hy(u, v) = 2[g( ) +8&(v) —ax(v—u)], a; =max|g'(u)].

The integrals in (3.2) can be approximated by quadratures with sufficient accuracy. Let us assume that we use a Gauss quad-
rature with L points, which is exact for single variable polynomials of degree k. We assume S} = {x/ : = 1,...,L} denote the
Gauss quadrature points on (X1, Xia]s and S = {y; #.p=1,...,L} denote the Gauss quadrature points on V1. ¥j,4)- For in-

stance, (x i,,,yj) (B=1,...,L) are the Gauss quadrature points on the left edge of the (i,j) cell. The subscript g will denote

the values at the Gauss quadrature points, for instance, u; , 1= =u', .(yj ). Also, w; denotes the corresponding quadrature weight

oninterval [—1,1], sothat Zﬁ 1w, = 1. We will still need to use the Gauss-Lobatto quadrature rule, and we distinguish the two
quadrature rules by adding hats to the Gauss-Lobatto points, i.e., S = {¥* : & = 1,..., N} will denote the Gauss-Lobatto quad-
rature points on [x,ﬂ, ; +1] and Sy ={yr:a=1,...,N} will denote the Gauss-Lobatto quadrature points on [yjf%, Y +%]. Sub-

scripts or superscripts 8 and y Wlll be used only for Gauss quadrature points and o only for Gauss—Lobatto points.
Then the scheme (3.2) becomes

L

0 =0~ Aeay ﬂi [ by 475) = i () [ ity - AxA—iy /; 1 (b 55.3) = o g 5 [ o

= ﬂ;’ =4 XL: [h]< i+4.8° x+‘ ) hl( u+ -3 ﬁ)] 2 ﬁi;wﬁ [hz (u/;ﬁ%’ uZJ*%) h2< - ﬁf* )] (3.3)

where /; =4L and /, = ﬁ—;.

Let uj; denote the average of pij(xf, y) over [yjf%, yH%] and u;; denote the average of p;(x, y](*) over [xif%,xi +%}, then the cell

average i is

1 'yj+l 1 1 Y J'f1
an 2 2
i = Axay /yj; / P Y)Y = 3oky / <Zp” Xy W’*Ax>dy Zwﬂ (Ay / Py(x.Y dy) ;Wﬁu’”
(34
where we have used the property that the quadrature rules are exact for polynomials of degree k. Similarly we have
L
= wllfy. (3.5)
p=1
Plugging (3.4) and (3.5) into (3.3), we get
i = U — Z"Vﬂ [ (g i) =y iy, )| -2 Zwﬁ [CRR R A CE |
p=1 p=1
a1

= _ az/lz _
— ] h ut ) —h <u. u’ )] —
(11}1 + (12)2 U ﬁz [ ! ( Hl‘/“ H%'ﬁ ! ’7%’/” "%”f + aq }.1 -+ (12)»2 y

—AzZW/fPh( pity /f1+> hz( RN >]

p=1

ai/q - +
(11}1 + a4, Zwﬁu'ﬁ # Zwﬁ [h1< 38 ’*1 ) —h (ui‘%~/f’uf*%-ﬂ>]
ay Ay
+a1)1 + axlo ZW[;UM AZZWﬁ[hz( B+ /‘J+) hz( pi-p U /U )]
L
ik o M+ _ n
=G an {”‘*ﬂ B (s (g 1+1-ﬁ) bty ”i—%ﬁ))

=

R L R
((5Y5) —n a1 + Ay ( ut _ +
+— wu»fih( .)—h(u.u.)).
a1 + Gola ; /3{ Bi a 2\ Mpjid ﬂ,H% 2\ P-4 Ppi-d
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Let us introduce the formal one-dimensional schemes

HY =, - % [ (1 pot) = i (0 01,) ) 59
Hﬁ”i%‘%[hz( Bi+y ;J%) h2< iy Uiy >] 27

then the scheme (3.3) is equivalent to

) L L
- ar/q i az/2 B
ol =" wgH + ———=—— wgH J.
v A+ az ﬂz 5% a1 A1 + Az, ﬂ; By

which tells us that u’}“ is a convex combinations of H"f and H’“ (B= ,L). Therefore, to have a maximum principle
! € [m,M] for (3.3), it suffices to enforce H;" H}’ ¢ [m M). We will only show how to deal with H*. The discussion for
H’“ is similar.

Notice that (3.6) is of the type (2.1), associated with p,-j(x,y](’). i.e., 07, is the cell average and u, are the nodal values

i+, /3 i 1.8

of p,-j(x7yf) on the interval [x; 10X Therefore, it is straightforward to use the limiter in Sectlon 2. If we can enforce

z+‘]
uf, € [m,M], then we can just use Theorem 2.5 for the formal one-dimensional scheme (3.6). We will show the details of
the enforcement of uf; € [m, M] in the next subsections. The CFL condition of the method for the two dimensional case is
the same as that in one-dimensional case

a1/ + Gy < min Wy,
a=1,...N

3.2. Implementation for the DG method

At time level n, assuming the DG polynomial on the (i, j) cell is p;(x,y) and the cell average of p;(x,y) is u} € [m,M], we use
the following p;i(x,y) to replace p;(x,y):

p =0 @)+, 0—mind U] MU 338
pl](x?y)_ (plj(xuy)*ul])‘l’uw = min Mijfﬂl"l' ) my*ﬂz ) ) ( . )
My = max p;(x.y), my= min p;(x.y), (39)

where Sj; is a set of finitely many points inside the (i,j) cell, to be specified later. Then p;(x,y) € [m,M] for all (x,y) € S;. The
maintenance of uniform high order accuracy by this limiter can be proved similarly as that in the one-dimensional case.
According to the discussion in the previous subsection, we need pj;(x,y) to satisfy the condition that all of the “one dimen-
sional cell averages” if;, i ; and the corresponding point values of the “one-dimensional polynomials” Pii(x, ¥*), py(xP,y) are
in the range [m, M.

By the properties of the quadrature rule,

L
_ ~ B .y
= E P,y w,, %J=§lmuﬁnnv
y=

Thus, to enforce uf;,uj; € [m,M], it suffices to include the tensor product of the Gauss quadrature points (x{‘,y}")
(B,y=1,....L)In Sy

We use ® to denote the tensor product, for instance, S;®S/ = {(x,y) :x € S{,y € S}. Now we can define the set
Sij as

Si=(S@S)uU S eS)u (S es). (3.10)
For example, for k =2, we need to use three-point Gauss quadrature. On a scaled square [—1,]] x[-1]), =9 =
{—¥55,0,Y15) with weights (3,4,3) and $* =& = {-1,0,1} with weights (},2,}). S defined in (3.10) contains 21 points.

In summary, the algorithm for our limiter on the DG method solving (3.1) is

e Evaluate the point values of p;(x) in (3.10) to get m;;, Mj; in (3.9).
e Compute p;(x) in (3.8).
o Use p;(x) instead of p;(x) in the DG scheme with the CFL condition a; A1 + @2/, < min,_;
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3.3. Implementation for the fifth order finite volume WENO scheme

First, Let us recall the dimension by dimension reconstruction procedure of the finite volume WENO for (3.1) in [22,24]. At

time level n, given the cell average ;. Let Upyj Uiy, Uijy and u". 4 , denote the approximation to the averages of the exact

solution along the left, right, bottom and top edges of the (i,)) cefl respectively.

Step 1. We perform two one-dimensional WENO reconstructions using the two-dimensional cell averages to get the four
edge averages (see [2,22,24] for more details):

{uu}a{ By } for fixed j (3.11)

H~]

and
{ug} — {‘ e nr +1} for fixed i. (3.12)

Step 2. We perform one-dimensional WENO reconstructions using the edge averages to get point values at the Gauss quad-
rature points (see the Appendix for more details):

{ﬂil%d'} - {UQ%Jf} {ﬂﬁ%J} — {u;%_ﬂ} for fixed i
{%%} - {”,}1%}7 {ﬂfﬁ%} {u; +1} for fixed j.

Now, let us consider the implementation of the limiter. The difference from the DG method is that the nodal values
u,+ 1 u/fﬁ, are not the point values of a specific polynomial in the WENO reconstruction. We do not have the “one-dimen-
snonal cell averages” uf'; and uj; either. To this end, we need to construct more polynomials in the (i,j) cell.
Step 3. We construct a single variable Hermite type polynomial p,(x) in the x-direction first, i.e. the polynomial p,(x)
should satisfy
1 1
Ax

and

piXdx=up, l=i-1,ii+1;
%
and

PiXiy) =Wy, Pi(Xiy) = U for fixed j.

2 i3
Then we construct a single variable Hermite type polynomial p,(x) in the y-direction, i.e. the polynomial p, (x) should satisfy

Y,
] I+%

= dy=u), l=j-1jj+1;
Ay y’lpz(y)y il J=1JJ

and
Dy (yj,%) = ﬂjjf%, D %) = ﬂi} e for fixed i.
We can get the “one-dimensional cell averages” by
uy=p0)), U =pi(x)). (3.13)

The property of quadrature rules implies that uf, and uj; above satlsfy (3.4) and (3.5).
Step 4. We construct a single variable Hermite type polynomlal p?(x) in the x-direction along the line y = yf, i.e. the poly-
nomial pf(x) should satisfy
1 il

= . pl()dx:ﬂfﬁ, I=i-1,i,i+1;

and
pi(xiy) = uy . Pl (Xiy3) = Uy, forfixed pe{1,....L}.
Likewise, we construct a single variable Hermite type polynomial p5(y) in the y-direction along the line x = x i.e. the poly-

nomial p’(y) should satisfy

1 yl+2 /, d | . .. .
A_y/ ) yfuﬁlv :]_17]7]+1~
1,
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and
pﬁ(yjf )= u/jj L pﬁ(yj+%) =y, forfixed pe{1,... L}

Now let us consider (3.6), in which u}; is obtained from (3.13) and u, ﬁ,u [y, are obtained from Step 2. Notice that

Uiy o u’, b are the nodal values and u}; is the average, respectively, of the smgle variable polynomial p/(x) on the interval

Thus, we can use the limiter in Section 2 on p#(x) to achieve Hj(/f € [m, M), i.e., use the following pf(x) instead of

[X %XH;]
pi(x):
M —u" m—u"
=p _ B =n =n _ . | 1/} 1/1
! ! o / |M - u?/f m — “,”/f
M’ = maxp}(x), m’ = minp}(x). (3.15)
xeS" xeS;‘
Similarly, we can define pj(y) by:
_ I . M-—-ul.| \m—uf.
Poy) = 0(p5(y) — U5, J) + U, Omm{'ru’iﬂ, i 1} (3.16)
Bi Bi
M’ = maxpj(y), m' = minp(y). (3.17)

yeﬁ]y yesy
The algorithm for the two-dimensional finite volume WENO scheme with our limiter is summarized as follows:
Perform Step 1 to Step 4.
Get p#(x) from (3.14) and (3.15).

Get p4(y) from (3.16) and (3.17).
Compute the revised nodal values

~1+ B pl ( ) ﬂtl = ﬁ/lf (X,-71>7
Uyjey = P (yf+%>’ Ly =D (y, )

e Plugging them in (3.3), we get the final scheme

an+l _ _ ~ 4
U = U MZW/’ [’“( g 1+1 /;) hy (ulflﬁ U ]/f)] }ZZW/‘ {h2< Bi+d /iJ+) hz( j—bum‘f%)]

p=1

with the CFL condition

a1 + 0 < mln Wl

Remark 3.1. For ENO and DG schemes, the cost of the limiter is very small since a polynomial is already available in each
cell. The cost to implement this limiter for WENO scheme is significantly larger because no polynomials are obtained after
the WENO reconstruction, only point values.

4. Application to two-dimensional incompressible flows

4.1. Preliminaries

We are interested in solving the two-dimensional incompressible Euler equations in the vorticity stream-function
formulation:

o + (Uw), + (vw), =0, 4.1
Ay =, (Uv)= (=, ), (4.2)
w(x,y,0) = wo(x,y), (u,v)-n=given on 9Q.
The definition of (u, ) in (4.2) gives us the divergence-free condition u, + v, = 0, which implies (4.1) is equivalent to the
non-conservative form
¢ + Uy + vy, = 0. (4.3)

The exact solution of (4.3) satisfies the maximum principle w(x,y, t) € [m,M], for all (x,y,t), where m = min,,mo(x,y) and
M = max,,wo(x,y). For discontinuous solutions or solutions containing sharp gradient regions, it is preferable to solve the
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conservative form (4.1) rather than the non-conservative form (4.3). However, without the incompressibility condition
uy + vy = 0, the conservative form (4.1) itself does not imply the maximum principle w(x,y,t) € [m,M] for all (x,y,t). This
is the main difficulty to get a maximum-principle-satisfying scheme solving the conservative form (4.1) directly. In [14], Levy
and Tadmor proved the second order central scheme for (4.1) satisfies a strict local maximum principle. Here, we will show
the (k + 1)th order accurate (for any k) DG scheme in [15] with the limiter in Section 3.2 under suitable CFL condition sat-
isfies the global maximum principle.

In [15], Liu and Shu introduced a high order discontinuous Galerkin method solving (4.1). We will first recall the method
in [15] briefly. First, solve (4.2) by a standard Poisson solver for the stream-function  using continuous finite elements, then
take u = —y,, v = y,.. Notice that on the boundary of each cell, (u, v) -n= (-, ¢,) -n= %, which is the tangential deriva-
tive. Thus (u, 2) - n is continuous across the cell boundary since y is continuous. Therefore, the DG scheme for (4.1) can be
defined as follows: start with a triangulation T, of the domain €, consisting of polygons of maximum size h, and the two

approximation spaces
Vi ={v: vy e P“(K),VK € Ty}, Wi, =VinNGCo(Q),

where P¥(k) is the set of all polynomials of degree at most k on the cell K. For given y, € Wy, find the w;, € V}; such that

/ dccopvdxdy — / wpuy, - Vodxdy + Z /u,, no,vds=0, YveVk (4.4)
K K ecok ve
where
_ _ [ % 9
uh—<uh7Vh>—< 2y ox )

Since the normal velocity u, - n is continuous across any element boundary e, we can define the Lax-Friedrichs upwind
biased flux:

_ 1
u, -nw, = h(wy,, w;,a,-n) = 5 [u, -n(w; + wy) —alw) —owy)], (4.5)
where a is the maximum of |u, - n| either locally or globally.

For convenience, consider the same rectangular mesh as in Section 3. Assume the stream-function y is obtained with Q*
elements, where Q* refers to the space of tensor products of single variable polynomials of degree k, and the DG method uses
P* elements. At time level n, in (i, ) cell, let wLJ(J’% w,;lJ.(y), wi*jil(x), and w;J+l(x) denote the traces of the DG polynomial

2 2 J2 2
wii(x,y) on the left, right, bottom and top edges, respectively. On the left, right, bottom and top edges, u,-n is
u,.t%_j(y)., u;%J(y), v:jf%(x). and vifﬁ%(x). respectively.

4.2. The main result

The cell average scheme with Euler forward in time of the DG method in [15] is

i = @ - Aﬁiy y [ (073,00, 074,00, gy ) = B(@7 3,00, 0, 0), 4y, 0) | dy
- ﬁgy [h (w;j%(x), 40, 9, ﬁ%(x)) - h(wifjf%(x), ol 4%). v H(x))] dx. (4.6)

The integrals in (4.6) are assumed to be computed exactly. Since all the integrands are single variable polynomials of degree
at most 2k — 1, the integral is equal to the k-point Gauss quadrature. Substituting the integrals by the k-point Gauss quad-
rature in (4.6), we obtain the mathematically equivalent expression

K

ol — @i — ) - + _ - +

Optt =@y~ Y wy [h <wi+%yﬁ7cui+%ﬁ7ui+%ﬁ> h(wi%_ﬂ,wif%ﬁ,u,-f%ﬁ)]
=1

k
) - + - +
— 2 ﬂzlw/; [h (wﬁ_j%, W ”/m%) - h((um%, Wy vm;%ﬂ : (4.7)

Now let us assume @} € [m,M] and the DG polynomial w;(x,y) is already processed by the limiter in Section 3.2 with
L = k. In particular, w;(x,y) € [m,M], V(x,y) € S; with S; defined in (3.10). Then we will show the scheme (4.7) satisfies
the maximum principle Cog” € [m,M].

If we use @;; to denote the average of w;(x!',y) over [yjf%, Y +%} and w;; to denote the average of wj(x, yj’.*) over [x,;%,xi %].
then the cell average @} is



X. Zhang, C.-W. Shu/Journal of Computational Physics 229 (2010) 3091-3120

3103
O dxdy = [ Ax |d )
i = Ay |, wuxy) " = ey |, Zwu X y)wyAx | dy = ZW/? F (!, y)dy
Ny Yy N\ =1 Vg
= Z Wypj, (4.8)
p=1
and similarly we have
k
= Z W/)'(Di,/;. (49)
p=1
Plugging (4.8) and (4.9) into (4.7), we get
n+1 -
5 = wj —7‘121""/1[ ( ivlp x+zl3 u”%-ﬁ> _h<w‘ 1 @ ,,_/;v Uigp )]
B
- +
— 2 ZW/;[ < /fj+“ /JJ+%’ ”/JJ%) - h(a)m%, wﬁj—%’ vﬁk%)]
p=1
ai/a + - +
T @it Gada ZWﬁwlﬁ & ;Wﬁ {h( i+ ‘/ﬁw"*%-/”u”%’ﬁ) B h<wf*1ﬁ’w! 1/3711,71,3)]
A/ k
- + - +
T @t as Z 1 Dpi = 42 ZW/’ [h (wﬁJ+%’ Opjrg ”ﬁﬁ%) B h( pi-y Prics ”ﬂJ*%ﬂ
- a1 _ aq ;.1 + a2, i _ n
@ ok ,Z wa oy = S (00 0 ) = (o000 )
" k A
a /Ay _ A+ Azl n
Farn e 230~ (005 O ) (0 05y )| .10
For later discussion, we define the following formal one-dimensional schemes
ip_ a1 + ax 2 . _ +
He = oy ——— (05 5 Oy g Uings) = (O OF g Uiy )| (4.11)
P a1 + a2
Bi _ LM 272 + _ - +
Hy' = oy, a [h< pivy PCpiy ”ﬁﬁ%) h(wm—%’wﬁj—%’ 1/,”,%)]. (4.12)
To show our main result, we need two lemmas first

Lemma 4.1. Consider a “one-dimensional first order Lax-Friedrichs” scheme
+1 _ p
(,()‘;1 = wj — A[h((l)j,(i)j+1,Uj)

= h(wj-1, w5, uj-1)],
where h(-, -,

(4.13)
) is defined in (4.5) and u;_1,u; € [—a, a]. Assume wj_1, wj, wj1 € [m,M], then
m — i[h(m,m,u;) — h(m,m,u;_y)] < ©]*" <M — i[h(M, M, ;) — h(M, M, u;_,)]
under the CFL condition
ai < 5
Proof. We can rewrite (4.13) as

. 1
ftt = w; - {j(u,—(a)j +Wj1) = A(O1 — 0))) =5 (U1 (D1 + 05) — (W) — Bj1))

1 A
=5 @+ U)o + {1 —)(2( — Ui 1)+‘1>} j 5 (@ = U)W

All the three coefficients are nonnegative under the CFL condition. Therefore

1 A
o =S (a+u 1)w,1+{1—)(2( — U 1)+‘1>} j + 5 (@ = Uj)Wj

]

1 A
(a-s—uj 1M + [l —A(z( —uj 1)+a)}M+§(a—uj)M:M—i[h(M,M u;) — h(M, M, u;_1)]
Similarly, we have m — Z[h(m, m, u;)

N~

N|>

—h(m,m,u;4)] < wj'?“. O
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Lemma 4.2. Under the CFL condition a;/; + 624, < Imin,_;_ W, we have

a1/ + a2z i a1/1 + aa

{1 BT— (Ui — ui—%./f)i| m<H < [1 e (Ui — uif%,/;)} M, (4.14)
a1 + Ay, i a4 + ax Ay

[1 — R (U yﬁj,%)}m <HY < 1= P2 (v — 0y ) M. (4.15)

Proof. We only prove (4.14) here. The proof for (4.15) is similar. We follow the main idea of the proof of Theorem 2.2. Con-
sidering the “one-dimensional scheme” (4.11), we would like to rewrite is as a convex combination of several “one-dimen-

sional first order schemes” of the type (4.13). Recall that SX ={x;_ y= =x1.x,. . XN = XHJ} are the Gauss-Lobatto quadrature
points on the interval [x;_ 1 X Also W, denotes the weights for the interval [—1,]] so that SN Wy = 1. Let ¥ = wy(x f‘,y}’)
foro=1,...,N, ¥ = w,,ld(xiﬁ,y]) and vﬁﬂ = Wi1j(X i1 Yj #). Since we assume that all the DG polynomials w;(x,y) are pre-
processed by the limiter, we have #, € [m,M]fora=0,...,N+1and = 1,..., k. By the property of the quadrature rule, we
get jy = SN W, k. We also have

Y -y
h(VN» UNyts ui%.ﬁ) - h(”m v, ui—%ﬁ)

2B 5p B B B
= h(v{v, v{m,uﬂ%ﬂ —h(}_y, 05,0) + > [h(2, ¥4,

=

0) — h(#_. #%,0)] + (2%, #4,0) — h(#f, #h.u; 4, ).

Il
[N]

o
For convenience, let us use / to denote % here, then (4.11) becomes:

i _ a1 A + ax
ip_ - QA+ 0aly _ N a _ N
H = iy a [h(wn%ﬂ’wi%‘/}’u”%-/f) h<wi—%,/3’wif%./f’ui*%-ﬁ)]

5 5B B
,w,ﬁ—)[h<vN,z/NH, 1 ,,) h(vo,vl,ui,%_ﬁ)]

N N-1
= Zwﬂjéj - [h(@{fn @ﬁm:ung—,ﬂ) - h(ijﬁl—lv 77;517 0) + [h(y/yﬂ 7>£+170)
o=1 =2
—h(@)_, 9,0)] + h(#4, #5,0) —h(#, }.u;y, )|
- g4 Y A B S p_ 4 SB 5B S8 sB
= WN yN_WN (h(l/ UN+1:“1+—#> _h(yN—NUN?O)) +1:2W°‘ yoc_w_a(h(ywyowl’o) _h(yzx 10 Yo 0))

& ekt )]

By Lemma 4.1, we can get the upper bound

HY < vy {M (h(MMuH_/;)—hMMO)}-FN] 1{ (h(M, M, 0) — h(M,M,O))}
=2 Wy
{ (h(M,M,0) ~ h(M.M, u,,lﬁ))}
Zi; [ (M, M, u;,35) = (M, M, 0) + h(M,M.0) — h(M,M,u;_y ;)|
=M-ih (M M, u;,y /’> - h<M’ M, uf*%-,/f)] — AMu g — Mu ] = {1 - W (”H%ﬁ - u,»,%,/;ﬂM.

Similarly, we can prove the lower bound. O

Theorem 4.3. Suppose w}; € [m,M] and the DG polynomial wj(x,y) is already processed by the limiter in Section 3.2 with L = k.
Thus wj(x,y) € [m,M] for all (x,y) € S; with S; defined in (3.10) . Then the scheme (4.7) satisfies the maximum principle
Cog.“ € [m, M| under the CFL condition a1 + 243 < %minazl _____
Proof. For convenience, we use /. to denote % and p to denote % here. Starting with (4.10), (4.11) and (4.12), we
have
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- I & i
nel _ 21 if B
w5t =~ E wgH" + § wgHy

p=1 M=

(Lemma 4.2) < §:w41—A(,+ﬂ—ukw)pw+ }:mw[ — (V553 — v3y3) | M

o=

ol k
<71 ﬁ ]) M — MZW/;)]( i1 —ll,;%vﬂ> —MZW/j)Lz(?/BJ+%—l/ﬁJ7;_)

= =1

:M_ AxAy (i( iy — Ui 1/;)WﬁAY+zk:(U/gH1—vm )wﬁAx>}

=1 p=1

Awu@wxﬂ—u@%%Q@+Awy0%w0—v@%%owﬂ

il

yj+% xi+% Xx+% yj+%
/ / uydxdy + / / vydydx
Y; X X A

1 1 1
i3 i3 g

=M|1 Ax Ay / / (ux+ vy dydx]

(ux+vy:0):M.

(quadrature) =M |1 — At (

Similarly, we can prove m < c’og.“. O
Remark 4.4. We can prove the same results for the upwind flux defined in [15] following the same lines.

Remark 4.5. The results of Theorem 4.3 holds also for any passive convection linear equations with divergence-free velocity
coefficients, namely Eq. (4.1) in which u and v are given functions satisfying u, + v, = 0, as long as the quadratures are exact
for the integrands in the scheme. This can be easily achieved if we pre-process the divergence-free velocity field so that it is
piecewise polynomial of the right degree for accuracy, continuous in the normal component across cell boundaries, and
divergence-free.

5. Numerical tests for the fifth order finite volume WENO scheme

In this section we provide numerical examples for the finite volume WENO scheme. The scheme for the numerical test is
third order SSP Runge-Kutta in time and fifth order spatial finite volume WENO approximation with the limiter, unless
otherwise specified. We use the global Lax-Friedrichs flux, although the results hold also for any other monotone flux.
The time step is taken as that indicated by the proof of maximum principle in the earlier part of the paper, unless otherwise
stated.

5.1. Standard one-dimensional test cases

Example 5.1. We solve the model equation

U +uy =0,
u(x,0) = ug(x),

with periodic boundary conditions.

Three smooth initial data u(x) on [0, 1] are used to show the accuracy. We list the L' and L™ errors for the cell averages at
time t = 0.1 in Table 5.1. In this example we take At = O(Ax3) for the purpose of showing fifth order accuracy.

For Runge-Kutta, the accuracy degenerates slightly. This is due to the lower order accuracy in the intermediate stages of
the Runge-Kutta method. In particular, recall that the limiter (1.4) does not destroy accuracy only if the polynomial p(x) is a
(k + 1)th accurate approximation to the exact solution. The reconstruction polynomials p(x) in the intermediate stages of a
Runge-Kutta method are in general not (k + 1)th order accurate, therefore the limiter (1.4) may kill the accuracy when it is
imposed in the intermediate stages. A similar phenomenon of the Runge-Kutta method in the context of boundary
conditions was pointed out in [1]. We emphasize that this accuracy degeneracy usually can only be observed on a very fine
mesh.
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Table 5.1

Third order SSP time discretization and fifth order finite volume WENO scheme with the limiter, for the linear equation with initial data uo(x). Ax =% and

At = 1A%
N SSP Runge-Kutta SSP multi-step

L' error Order L> error Order L' error Order L* error Order

Up(x) = 0.5 +sin(27x)
20 1.58E—4 - 3.03E-4 - 1.53E-4 - 2.87E-4 -
40 4.65E—6 5.09 1.00E-5 491 4.69E-6 5.02 1.03E-5 4.79
80 1.39E-7 5.05 2.79E-7 5.17 1.43E-7 5.03 3.13E-7 5.04
160 4.36E-9 5.00 8.30E-9 5.07 4.40E-9 5.02 9.28E-9 5.08
320 1.42E-10 4.94 7.81E-10 3.41 1.37E-10 5.00 2.52E-10 5.20
640 5.12E-12 4.78 6.82E-11 3.51 4.40E-12 4.96 7.73E-12 5.03
1280 1.75E-13 4.87 5.95E-12 3.52 1.29E-13 5.09 2.21E-13 5.13
up(x) = 0.5 + sin*(2mx)
20 1.07E-2 - 2.60E-2 - 1.22E-2 - 2.37E-2 -
40 1.70E-3 2.66 3.46E-3 2.90 1.85E-3 2.73 3.77E-3 2.65
80 1.01E-4 4.06 3.44E-4 3.33 1.24E—-4 3.89 4.90E-4 2.94
160 2.87E-6 5.14 1.59E-5 4.42 2.96E-6 539 1.58E-5 4.94
320 7.71E-8 5.21 3.60E-7 5.47 7.71E-8 5.26 3.59E-7 5.46
640 1.81E-9 5.40 5.75E-9 5.97 1.81E-9 5.40 5.75E-9 5.97
1280 4.16E-11 5.44 9.36E-11 5.94 4.17E-11 5.45 9.36E-11 5.94
u’(x) = 0.5 + sin®(2nx)
20 3.09E-2 - 9.08E-2 - 2.99E-2 - 8.41E-2 -
40 3.50E-3 3.13 1.26E-2 2.85 3.49E-3 3.10 1.24E-2 2.76
80 2.43E-4 3.84 7.44E—-4 4.08 2.46E—4 3.82 7.33E-4 4.07
160 8.52E-6 4.83 3.33E-5 4.48 8.51E-6 4.85 3.34E-5 4.45
320 2.83E-7 491 1.12E-6 4.88 2.83E-7 4.90 1.13E-6 4.88
640 8.32E-9 5.09 3.35E-8 5.07 8.32E-9 5.09 3.36E-8 5.07
1280 2.28E-10 5.18 9.41E-10 5.15 2.28E-10 5.18 9.39E-10 5.16
2560 6.45E—-12 5.14 3.15E-11 4.89 6.44E—-12 5.14 3.09E-11 4.92

Table 5.2

Third order SSP time discretization and fifth order finite volume WENO scheme with the limiter, for the Burgers’ equation. t = 0.15, Ax =2 and At = 1A%.
N SSP Runge-Kutta SSP multi-step

L' error Order L*> error Order L! error Order L> error Order

20 1.58E—4 - 3.12E-4 - 1.34E—4 - 2.55E—4 -
40 6.79E—6 4.54 1.27E-5 4.61 6.69E—6 4.32 1.24E-5 4.35
80 2.66E—7 4.67 7.19E-7 4.14 2.62E-7 4.67 7.09E-7 413
160 9.45E-9 4.81 5.34E-8 3.75 9.28E-9 4.82 4.95E-8 3.84
320 2.31E-10 5.35 1.24E-9 5.42 2.30E-10 5.32 7.84E-10 5.98
640 5.86E—12 5.30 4.76E-11 4.70 5.56E—12 537 1.23E-11 5.99
1280 1.67E-13 5.13 3.75E-12 3.67 1.41E-13 5.29 3.72E-13 5.04

To justify that the limiter itself does not kill accuracy, we also perform accuracy tests for the scheme using the third order
SSP multi-step time discretization and the same fifth order finite volume WENO approximation with the limiter. The full
accuracy order is observed for the multi-step time discretization. Since accuracy degeneracy is usually only observed on very
fine meshes for Runge-Kutta methods, in applications it is often acceptable to use the Runge-Kutta methods, similar to the
conclusions in [1].

Example 5.2. We solve the Burgers’ equation with periodic boundary conditions

u2
ut+<7> =0, -1<x<1,

u(x,0) = ug(x).

For the initial data ug(x) = 0.25 + 0.5 sin(7x), the exact solution is smooth up to t = 2, then it develops a moving shock which
interacts with a rarefaction wave. In this example we take At = O(Ax3) for the purpose of showing fifth order accuracy.

At t = 0.15 the solution is still smooth. We list the errors in Table 5.2. We can clearly see the designed fifth order accuracy
is achieved for the multi-step time discretization, while the accuracy for the Runge-Kutta time discretization is less clean. At
t = 2 the shock just begins to form; at t = 2.0 the interaction between the shock and the rarefaction waves is over, and the
solution becomes monotone between the shocks. In Fig. 5.1 we can see that the shock is captured very well.



u(x)

Fig. 5.1

Fig. 5.2. Example 5.3. t = 0.4, N = 160, Ax =2 and

Table 5.3

. Example 5.2. N = 80,

X. Zhang, C.-W. Shu/Journal of Computational Physics 229 (2010) 3091-3120

u(x)

u(x)

3107

At
Ax

a = 3. Solid line: exact solution; symbols: numerical solution (cell averages).

Third order SSP time discretization and fifth order finite volume WENO scheme with the limiter, for the two-dimensional linear equation with initial data

sin(27(x +y)). t = 0.1, At = 1A% and Ax = Ay = .

NxN SSP Runge-Kutta SSP multi-step
L' error Order L> error Order L' error Order L> error Order

10 x 10 7.68E-3 - 1.13E-2 - 6.32E-3 - 9.80E-3 -

20 x 20 2.88E-4 4.73 5.92E-4 4.26 2.94E—4 442 6.00E—4 4.03
40 x 40 9.03E-6 4.99 1.69E-5 5.12 9.51E-6 4.95 1.97E-5 4.92
80 x 80 2.86E-7 4.98 8.91E-7 4.25 2.96E-7 5.00 6.17E-7 5.00
160 x 160 1.05E-8 4.75 8.59E-8 3.37 9.26E-9 5.00 1.90E-8 5.02
320 x 320 4.44E-10 4.56 7.67E-9 3.49 2.89E-10 4.99 5.28E-10 5.17

Example 5.3. We use the nonconvex Buckley-Leverett flux

fw

_ 4u?
a2 + (1-u)
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Table 5.4
Third order SSP time discretization and fifth order finite volume WENO scheme with the limiter, for the two-dimensional Burgers’ equation with the initial data
0.5 + sin(m(x +y)). t = 0.05, At = 1A%} and Ax = Ay = 2.

N x N SSP Runge-Kutta SSP multi-step

L' error Order L* error Order I! error Order L error Order
40 x 40 1.57E-5 - 1.06E—4 - 1.52E-5 - 6.97E-5 -
80 x 80 7.81E-7 433 9.94E-6 342 6.15E-7 4.63 4.87E-6 3.84
160 x 160 3.73E-8 4.38 9.50E-7 3.39 2.52E-8 4.61 3.66E-7 3.74
320 x 320 1.36E-9 4.77 7.12E-8 3.73 7.59E-10 5.05 1.26E-8 4.89
640 x 640 5.11E-11 4.73 5.64E—9 3.66 1.90E-11 5.31 1.55E-10 6.34

Fig. 5.3. Example 5.5. The numerical solution of the two-dimensional Burgers’ equation. t = 0.6. At = %Axg and Ax = Ay = 2.

oo} "R L L OS5k o 1 by b by b
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

Fig. 5.4. Example 5.5. Cut along the diagonal. Solid line: the exact solution; symbols: numerical solution. Left: t = 0.23, right: t = 0.6. Ax = Ay = 2.

to test convergence to the physically correct entropy solutions. The initial condition is taken as u=1in [-1,0] and u =0
elsewhere. The “exact” solution is obtained from the first order Lax-Friedrichs scheme on a very fine mesh. The computa-
tional result is displayed in Fig. 5.2, which is quite satisfactory.
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Fig. 5.5. Example 5.6 (traffic flow problem). N = 800, Ax =2 and

averages).

At
Ax

a = where a = 100. Solid line: exact solution; circles: numerical solution (cell

5.2. Standard two-dimensional test cases

Example 5.4. We solve the linear equation u; + uy +uy, = 0 on [0, 1] x [0, 1] with periodic boundary condition. The initial
condition is g (x + y) = sin(27(x + y)). In this example we take At = O(Ax?) for the purpose of showing fifth order accuracy.
The results are similar to the one-dimensional case, see Table 5.3.

2
initial condition is 0.5 + sin(7(x + y)). In this example we take At = O(Ax3) for the purpose of showing fifth order accuracy.
The results are again similar to the one-dimensional case, see Table 5.4 and Figs. 5.3 and 5.4.

Example 5.5. We solve the Burgers’ equation u; + (”;)x + (ﬁ)y =0on|[-1,1] x [-1, 1] with periodic boundary condition. The

5.3. Test cases from traffic flow models

In the subsection, we test our fifth order finite volume WENO scheme with the limiter on two traffic flow problems. To
describe the dynamic characteristics of traffic on a homogeneous and unidirectional highway, the Lighthill-Whitham-Rich-
ards (LWR) model is widely used. The governing equation for the LWR model is a scalar conservation law

p+4q(p),=0
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Fig. 5.6. Left: the graph of q(p); right: the graph of q"(p).
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Fig. 5.7. Example 5.7 (traffic flow problem). t = 18 min, N = 1600, Ax =22 and 4 a = {; where a ~ 100. Solid line: exact solution; circles: numerical solution

(cell averages). The region inside the rectangle on the right is magnified in Fig. 5.8.
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Fig. 5.8. Magnified graph of the region inside the rectangle in Fig. 5.7.
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Table 6.1
Third order SSP time discretization and the DG scheme with the limiter, for the linear equation with initial data sin(27x), Ax =4, t=0.1
N SSP Runge-Kutta SSP multi-step
L' error Order L error Order L' error Order L error Order
P2 At = 5 Ax At = 4 Ax
20 4.71E-5 - 7.31E-5 - 4.70E-5 - 7.28E-5 -
40 2.95E-6 3.99 5.77E—6 3.66 2.97E-6 3.98 4.65E-6 3.97
80 1.95E-7 3.92 9.48E-7 2.60 1.87E-7 3.98 2.93E-7 3.98
160 1.86E-8 3.39 2.76E-7 1.78 1.18E-8 3.98 1.85E-8 3.98
320 2.05E-9 3.18 8.97E-8 1.62 7.55E—10 3.97 1.18E-9 3.97
640 2.69E-10 2.93 2.84E-8 1.66 4.92E-11 3.93 7.74E-11 3.94
1280 3.93E-11 2.78 8.59E-9 1.72 3.35E-12 3.87 5.35E-12 3.85
2560 5.65E—12 2.80 2.49E-9 1.78 3.16E-13 3.40 6.73E-13 3.10
P At = {5 Ad At = L A%
20 1.06E-6 - 1.62E-6 - 3.97E-6 - 6.54E—6 -
40 7.14E-8 3.90 1.47E-7 3.46 2.13E-7 4.22 4.61E-7 3.82
80 5.08E-9 3.81 3.45E-8 2.09 7.39E-9 485 3.38E-8 3.77
160 4.48E-10 3.50 8.14E-9 2.08 3.46E-10 441 2.01E-9 4.07
320 4.51E-11 3.31 1.91E-9 2.09 2.17E-11 3.99 1.43E-10 3.81
640 4.78E—12 3.24 4.15E-10 2.20 1.36E-12 3.99 7.79E-12 4.20
P4 At =1A% At =1A%
10 1.27E-5 - 3.27E-5 - 5.78E—4 - 1.01E-3 -
20 1.95E-7 6.03 9.45E-7 5.11 3.90E-7 10.5 6.13E-7 10.6
40 1.66E—8 3.55 1.32E-7 2.83 7.38E-9 5.72 1.16E-8 5.72
80 1.29E-9 3.69 1.74E-8 2.95 1.52E-10 5.59 2.39E-10 5.59
160 7.54E-11 4.09 1.88E-9 3.21 3.34E-12 5.51 5.34E-12 5.48
320 4.19E-12 4.16 1.97E-10 3.26 6.95E—14 5.59 1.09E-13 5.61
640 2.37E-13 414 2.14E-11 3.20 1.13E-15 5.72 2.07E-15 5.72
P5 At =1 Ax? At =1 Ax?
10 5.53E-6 - 1.38E-5 - 3.31E-5 - 5.48E-5 -
20 4.94E-8 6.81 2.46E-7 5.81 7.48E-9 12.0 1.16E-8 12.0
40 2.71E-9 4.19 2.11E-8 3.54 1.19E-10 5.97 1.87E-10 5.95
80 1.57E-10 4.10 1.78E-9 3.56 1.88E—12 5.98 3.02E-12 5.95
160 6.87E—12 4.52 1.46E-10 3.60 2.92E-14 6.01 4.66E—14 6.02
320 2.40E-13 4.84 9.92E-12 3.88 4.56E-16 5.99 7.36E-16 5.98

with suitable initial and boundary conditions. Here p € (0, p,,..,) is the density, p,,,, is the maximum (jam) density, and q(p)
is the traffic flow on a homogeneous highway, which is assumed to be a function of the density only in the LWR model. The
flow g, the density p and the equilibrium speed u are related by

a(p) = u(p)p.

Example 5.6. The first traffic flow test example is taken from [18]. The flow-density function is given by a concave function

~0.4p +100p, 0< p <50,
q(p) ={ —0.1p? + 15p +3500, 50 < p < 100,
~0.024p? —5.2p + 4760, 100 < p < 350.

Consider a long homogeneous freeway of length 20 km. The entrance density is 50 veh/km. Due to an incident near the
downstream end of the freeway, the piecewise linear traffic density profile shown in Fig. 5.5(a) is formed. To release the traf-
fic jam condition downstream, the freeway entrance is blocked for 10 min, after which traffic is released again from the
entrance at the capacity density 75 veh/km. After 20 min, the entrance flow returns back to normal with a density
50 veh/h. At the exit boundary, a traffic signal is installed, with a repeated pattern of 2 min green light (zero density) fol-
lowed by 1 min red light (jam density). The numerical solutions are shown in Fig. 5.5(b)-(d), in which the solid lines are
the exact solution and the symbols are the numerical solution obtained by our fifth order finite volume WENO scheme with
the limiter using N = 800 cells. We can observe that our WENO scheme with the limiter produces very good approximations
to the exact solution for this test case. Moreover, the numerical solutions are all in the interval (0, p,,,,), which is an impor-
tant advantage for such applications.

Example 5.7. We consider a similar problem but with a much more complicated flow-density function in [10]. The flow
function q(p) = pV.(p) is given by
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Fig. 6.1. Example 6.1. N = 160, t = 100, Ax = 2 and At = £ Ax. Solid line: exact solution; squares: numerical solution.
Table 6.2
Third order SSP time discretization and the DG scheme with the limiter, for the Burgers’ equation with initial data 0.25 + 0.5sin(nx), Ax =2, t =0.15.
N SSP Runge-Kutta SSP multi-step
L' error Order L> error Order L' error Order L*> error Order
P2 At =, Ax At = j7 Ax
20 5.12E-5 = 8.88E-5 = 5.14E-5 = 8.87E-5 =
40 3.16E-6 4.01 6.78E—6 3.71 3.15E-6 4.03 6.23E-6 3.83
80 1.98E-7 3.99 9.52E-7 2.83 1.94E-7 4.02 4.97E-7 3.65
160 1.37E-8 3.85 1.84E—7 2.36 1.19E-8 4.02 3.81E-8 3.70
320 1.23E-9 3.48 6.70E-8 1.46 7.45E-10 4.00 3.03E-9 3.65
640 1.31E-10 3.23 2.30E-8 1.54 4.67E-11 3.99 2.53E-10 3.58
1280 1.79E-11 2.87 7.38E-9 1.64 3.12E-12 3.90 4.14E-11 2.61
2560 2.61E-12 2.77 2.24E-9 1.72 2.59E-13 3.59 9.63E-12 2.10
P3 At = 1 Axt At = A
20 1.45E-5 - 6.62E-5 - 1.04E-5 - 4.05E-5 -
40 6.70E-7 4.44 2.79E-6 4.56 5.31E-7 4.29 1.54E-6 4.71
80 3.54E-8 4.24 3.49E-7 2.99 2.48E-8 4.42 1.11E-7 3.79
160 1.15E-9 4.94 1.14E-8 4.94 9.91E-10 4.64 4.48E-9 4.63
320 6.67E—11 4.11 2.29E-9 2.31 4.96E-11 4.32 2.43E-10 4.20
640 4.39E-12 3.92 5.13E-10 2.16 2.25E-12 4.46 1.62E-11 391
1280 3.79E-13 3.53 1.09E-10 2.23 1.04E-13 4.42 9.23E-13 4.13
P4 At = 1A% At =1A%
10 7.54E-5 - 1.87E-4 - 3.08E-4 - 1.10E-3 -
20 2.18E-6 5.11 5.19E-6 5.17 2.00E-6 7.26 5.57E-6 7.63
40 1.00E-7 443 1.08E—6 2.26 5.04E-8 531 1.92E-7 4.85
80 6.44E-9 3.96 1.94E-7 2.48 1.39E-9 5.18 5.58E-9 5.11
160 1.24E-10 5.69 4.49E-9 5.44 3.81E-11 5.19 1.66E-10 5.07
320 6.09E-12 435 4.79E-10 323 9.70E-13 5.29 5.11E-12 5.02
640 3.14E-13 4.28 4.97E-11 3.27 2.26E-14 5.42 1.54E-13 5.03
P5 At =1Ax? At =3A%
10 7.85E—6 - 3.89E-5 - 8.15E-6 - 2.59E-5 -
20 2.28E-7 5.10 2.26E-6 4.10 5.69E-5 -2.8 2.58E—4 -33
40 1.61E-8 3.83 3.12E-7 2.86 2.11E-9 14.7 8.97E-9 14.8
80 1.13E-9 3.82 4.36E-8 2.84 3.40E-11 5.95 1.44E-10 5.95
160 1.10E-11 6.67 4.69E-10 6.54 5.36E-13 5.99 2.26E-12 5.99
320 4.78E-13 4.53 3.72E-11 3.66 8.40E-15 5.99 3.59E-14 5.98
640 1.67E-14 4.83 2.47E-12 391 1.31E-16 5.99 5.63E-16 5.99
V2 4v?
Ve(p) = 1441422
3(p) 2V0 2
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Table 6.3
Third order SSP time discretization and the DG scheme with the limiter, for the two-dimensional linear equation with initial data sin(m(x +y)), Ax =2, t =0.1
NxN SSP Runge-Kutta SSP multi-step
L' error Order L error Order L' error Order L error Order
P2 At = {4 Ax At = 5 Ax
10 x 10 1.69E-2 - 6.38E-2 - 1.79E-2 - 6.72E-2 -
20 x 20 2.69E-4 5.97 7.89E—4 6.34 3.28E-4 5.77 1.09E-3 5.95
40 x 40 4.53E-5 2.57 1.99E-4 1.99 2.43E-5 3.75 3.98E-5 4.78
80 x 80 6.83E-6 2.73 5.33E-5 1.90 2.72E-6 3.16 4.03E-6 3.30
160 x 160 9.82E-7 2.80 1.40E-5 1.93 3.27E-7 3.06 5.05E-7 2.99
P3 At = L A% At =5 A%
10 x 10 7.39E-4 - 1.74E-3 - 8.29E-4 - 1.34E-3 -
20 x 20 3.27E-5 4.49 1.63E-4 3.42 1.76E-5 5.56 5.08E-5 4.72
40 x 40 3.32E-6 3.30 2.57E-5 2.66 1.31E-6 3.74 3.64E-6 3.80
80 x 80 3.10E-7 3.42 4.29E-6 2.58 1.16E-7 3.50 2.63E-7 3.79
160 x 160 2.76E-8 3.49 7.06E-7 2.36 7.78E-9 3.90 1.53E-8 4.10

Table 6.4
Third order SSP time discretization and the DG scheme with the limiter, for the two-dimensional Burgers’ equation with initial data sin(m(x +y)),
Ax =2, t=0.05.

N x N SSP Runge-Kutta SSP multi-step
I! error Order L error Order I! error Order L error Order
P2 At = L Ax At =5 Ax
10 x 10 3.68E-3 - 1.07E-2 - 3.60E-3 - 1.09E-2 -
20 x 20 3.49E-4 3.40 1.11E-3 3.27 2.89E-4 3.64 7.21E-4 3.92
40 x 40 5.73E-5 2.61 1.56E-4 2.83 4.57E-5 2.66 1.36E-4 241
80 x 80 8.87E—6 2.69 4.70E-5 1.73 6.48E—6 2.82 2.42E-5 249
160 x 160 1.39E-6 2.67 1.30E-5 1.85 9.37E-7 2.79 4.51E-6 243
P3 At =LA At = AxE
10 x 10 7.27E-4 - 2.42E-3 - 5.40E-4 - 2.24E-3 -
20 x 20 8.76E-5 3.05 2.85E-4 3.08 7.16E-5 291 2.51E-4 3.12
40 x 40 5.29E-6 4.05 2.08E-5 3.78 3.37E-6 4.41 1.69E-5 3.89
80 x 80 4.07E-7 3.70 4.03E-6 237 2.04E-7 4.04 9.27E-7 4.19
160 x 160 3.11E-8 3.71 6.97E-7 2.53 1.25E-8 4.02 5.93E-8 3.97
with
V(p) :l<l_ 1 ) a(pmax)
T" p pmax Ot(p)
and

a(p) = o + Ax (tanh(pA_—ppc) + 1).

Here Vo,